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Abstract - This paper showsthat divide-and-conquerderivesa
minimum sum-of-products expression(MSOP) of functions that
have an AND bi-decomposition when at least one of the sub-
functions is orthodox. This extends a previous result show-
ing that divide-and-conquer derives the MSOP of the AND bi-
decompositionof two orthodox functions. We showthat divide-
and-conquer does not always produce an MSOP when neither
function is orthodox. However, our experimental results show
that, in this case,it derives a near minimal SOP At the same
time, our approach significantly reducesthe time neededto find
an MSOP or near minimal SOP Also, we extend our resultsto
functions that have a tri-decomposition.

|. INTRODUCTION

Let function f have the decompositionf (X1, Xz, ..., Xm) =
g(h1(X1),h2(X2), ..., hm(Xm)), whereX; andX; (i # j) aredis-
joint. A sum-of-productsexpression(SOP)for f canbe de-
rived by substitutinga minimum sum-of-productsxpression
(MSOP)for hi(i = 1,2,...,m) andits complementas appro-
priate,into an MSOPfor g, andthenapplyingthe distributive
law. This processs denotedasdivide-and-conquer. In this
paperwe seekconditionsunderwhich theresultingSOPis an
MSOR Fig. 1.1 shaws the circuit associatedvith divide-and-
conquer

A specific type of decompositionholds special interest.
Function f hasan AND (OR) bi-decompositiorif f canbe
written as (X1, X2) = h1(X1)&Oha(X2), whereX; and X, are
disjoint setsof variablesand ¢ is the AND (OR) operation.
Many benchmarkfunctions have eitheran AND or OR bi-
decompositiorf12].

Functionswith anOR bi-decompositiorareespeciallyinter
esting,sincea minimum sume-of-productexpressionMSOP)
for f(Xl,Xz) = hl(Xl) \Y hz(Xz) is obtained as Hl(Xl) V
Hz(X2), whereH; (X1) andHz(X2) arethe MSOP's for hy (X1)
andhy(Xp), respectiely. In this case divide-and-conqueal-
ways producesan MSOPR As a result, the computationtime
is short. Thatis, if |X;| is nearlythe sameas |X;|, the time
to find Hi(X1) and Hz(X2) separatelyis typically muchless
thanthetimeto find theMSOPof (X1, X2) = h1(X1) V ha(X2).
This follows from thefactthatthe time to optimizean SOPof
an n-glariablefunction whoseMSOPhast productsis at least
o(nt<).

If f hasanAND bi-decompositionf = h1(X1)h2(X2), it is
temptingto believe thatanMSOPfor f is obtainedoy ANDing
the MSOPsfor hy(X1) andhy(X;) followedby theapplication
of thedistributive law. However, thisis only known to hold for
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thecasewhereh; (X1) andhz(X2) arebothorthodoxfunctions.
Namely anorthodoxfunction f hasthe propertythat

T(f) =n(f),

wheret(f) is the numberof producttermsin an MSOP of f
andn(f) is the numberof true mintermsof f in the maxi-
mumindependensetof f; i.e. alargestsetMIS of minterms
with the property that no prime implicant of f covers two
mintermsin MIS If hy(X;) and hy(X2) are both orthodox,
thenafastminimizationexistsfor hy(X1)hz(X2), hamelymin-
imize h1(X1) andhy(Xz2) separatelyandapply the distributive
law to derive an MSOPfor hy(X1)hz(X2). This propertyand
its relation to fast minimization was first shovn in [11]. It
hasbeenincorporatednto the MUSAHI logic minimizer[6],
which successfullyderivesexactminimum SOPgor functions
whereESPRESSG@ails dueto memoryoverflow. In thispaper
we extendthis by shaving thatan MSOPfor a function with
an AND bi-decompositioncan be obtainedin the sameway
if exactly oneof hy(X1) andhy(X;) is orthodox. Further we
shaw that no definitive statementanbe madewhenbothare
non-orthodoxalthoughexperimentshaw that,for mostcases,
the distributive law is not sufficient for deriving an MSOP of
hi(X1)h2(X2).

We also extend the theory to derive the MSOPsfor tri-
decomposabléunctions. This paperis organizedasfollows.
Sectionll outlinesthe notationused. The sectionafter that
shavs theresultscited above. The next sectiondiscussesien
resultson tri-decomposition.SectionlV shows experimental
results,andSectionV givesconcludingremarks.

Fig. 1.1 Functiondecompositiorassociateavith divide-and-conque

I1. NOTATION

Definition 2.1 x andx are literals of variable x. The AND of
literalsis animplicantl of f, if f is 1whenl is1.

Definition 2.2 A primeimplicant Pl of a function f is anim-
plicantof f, sud thatthedeletionof anyliteral in Pl causest
notto beanimplicantof f.
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Definition 2.3 An irredundant sum-of-poducts expression
(ISOP)F(X) of function f (X) is the ORof Pls of f(X), suct
that f (X) = F(X) andno Pl canbedeletedromF (X) without
changingthe functionrepresentedy F (X).

Definition 2.4 AmongtheSOPsfor f(X), onewith thefewest
Plsis a minimumSOPor MSOP

Example 2.1 x1x3 V XoXa V X3X2 and X1 X3 V X1X2 V X1X3 V X1 X2

are bothISOP’ of thesamefunction,but only theformeris an

MSOP (Endof Example)

Definition 2.5 Lett(f) bethenumberof Plsin an MSOPfor
f.

Example2.2 For f = Xix3 V Xox3 V X%z, T(f) = 3.

(Endof Example
Theexampleswe useto illustratetheconceptsncludesym-
metricfunctions.
Definition 2.6 S,, a (totally) symmetric function, is 1 if mof
its n variablesare 1, whele m € A andis O otherwise

Example 2.3 The AND and OR functionson n variablesare

symmetricand representedby S'{‘n} and S'{11;2}...n}' respec-

tively. Also, XiX3 V XoX3 V X1 X2 = 513 5(X1,%2,%3). Themajor-
ity function MAJ(Xq, X2,X3) IS givenas xiXo V XiX3 V XoX3 =
S} 5(x1, %2, Xa). (Endof Example)

I1l. ORTHODOX FUNCTIONS

As discussedin the previous section, minimization of
an SOP is easierwhen a function f has an AND bi-
decompositionandan MSOPis formedby applyingthe dis-
tributive law to the SOPsof the componentunctions.

A. Independen§etsof Minterms

Definition 3.1 Givena function f (X), let M(f) be the setof
true mintermsfor f. Then,IND(f) C M(f) is an indepen-
dent setof minterms of f iff no Pl of f coversmore thanone
mintermin IND(f).

Definition 3.2 Givena function f, MIS( f) denotesa maxi-
mum independent set of minterms. n(f) is the numberof
elementsn MIS(f).

Example 3.1 Symmetricfunction f = Sflz}(xl,xz,xg) has

two maximum independent sets of minterms
{XaXoXs, X1XoX3, XaXoX3} and {X1XoX3, X1X2X3, X1X2Xs}.  Thus,
n(f)=3. (Endof Example)

Definition 3.3 Givena function f (X), let M(f) be the setof
true mintermsfor f. Then,DIS(f) C M(f) is a setof distin-
guishedminterms if exactlyonePl of f coversead minterm
in DIS(f).

Example 3.2 Symmetrio‘unctions?lz} (x1,X2,x3) hasnodis-
tinguishedmintermsbecausevery mintermis coveed by two
Pls. However, 8?11273} (X1,%2,X3) = X1 V X2 V X3 hasthree dis-
tinguishedminterms xi XX, X1X2X3, X1X2X3. (Endof Example)
For a function f covered only by essentialPls, n(f) =
IDIS(f)|. In generaln(f) > |DIS(f)|.

B. Relationship Between MSOPs and IndependentSets of
Minterms

Lemma 3.1 [11]
T(f) > n(f). &)

Lemma3.2 [11] Let IND(h;) be an independentset of
minterms of hy(X1) and IND(h;) be an independentset
of minterms of hy(Xz).  Then, IND(hy)xIND(hy) is
an independentset of minterms for hy(X;)hi(X2), whee
IND(h1) xIND(hy) is the AND of all mintermsin IND(hy)
with all mintermsin IND(hy).

Definition 3.4 Afunctionf is orthodox iff

Otherwise,f is non-orthodox.

Example 3.3 Symmetric function f = S?l 2 (X1,X2,X3) =
X1X2 V XoX3 V X3X1 is orthodox,since

(f)=n(f)=3.

(Endof Example)

Theorem 3.1 [11] Lethy(X1) andhy(X2) beorthodox,whee
X1 and Xz are disjoint setsof variables.Then,hy (X1)h2(X2) is
orthodox.

Next, we derive a new theoremthat extendsthis. Specifi-
cally, we shav thataminimal SOPis achievableusingonly the
distributive law even if we replacethe requirementhat both
functionsbeorthodoxwith thelessrestrictive requirementhat
atleastonebeorthodox.Thissuggestshatthefastalgorithmis
extendedio a muchlarger classof functions,sinceexperimen-
tal resultsshov thatorthodoxfunctionsrepresenavanishingly
smallfactionof all functionsasn increase$11].

Theorem 3.2 LetHy(X;) bethe MSOPof a nontrivial ortho-
doxfunctionhy (X1), andlet Hz(X;) bethe MSOPof a nontriv-
ial non-orthodoxXunctionhy(Xz), whele X; andX; are disjoint
setsof variables. Then,an MSOPfor hy (X1)h2(X2) is obtained
by applyingthedistributive law to Hy (X1)H2(X2).

Proof On the contrary supposethat there exists an MSOP

MFG(X1,X2) for hihy, where t(hihy) < t(h1)t(h2). Let

MIS(h1) be a maximumindependensetof h;. Let & bean

assignmenthat correspondso a mintermin MIS(hs). Then,

MFG(&;, X2) representshe function hz(Xz). Thisis because
h1(&) = 1 andthe MF G(Xq, X2) representsi; (X1)ha(Xz). Let

the numberof productsn MFG(&;, X;) bet;.

Therearen(h;) differentwaysto assigng;. Note that for
differentd;, differentproductsin MFG(Xz, X2) remain,since
h1(X1) is non-trivial (not a constantl). Further z{':“;“ti =
T(MFG(X1,X2)). Note that, T(MFG(Xy, X2)) < T(h1)T(h2).
Also, 1(h1) =n(hy), sincehy is orthodox.

By the PigeonholePrinciple[4], thereexists atleastoneas-
signmentg; suchthatt; < t(h2(X2)). But, this is a contradic-
tion, since suchan assignmenproducesan SOP for hy(Xz)
with fewer productsthant(hz(X2)). 1



Corollary 3.1 Let exactly oneof hi(X;) or hy(X2) be ortho-
dox,whele X; and Xy are disjoint setsof variables.Then,

T(h(X1)h2(X2)) = T(he(X1))T(h2(X2)).

We canextend our resultto bi-decompositiondesidesAND
andOR.

Theorem 3.3 Supposethat the given function f has a bi-
decompositionf (Xg, X2) = g(h1(X1), h2(X2)), whee X; and
X2 are disjoint setsof variables. If hy, hy, andtheir comple-
mentsare orthodox,thenan MSOPfor f canbe derivedfrom
the MSOPsfor g, and hy, hy andtheir complementsisingthe
distributive law only.

This shaws that divide-and-conquesucceeddor all two-
variablefunctionsg whenthe functionsh; andtheir comple-
mentsareorthodox.

C. Classe®of FunctionsThatAre Orthodox

Thefollowing summarizegunctionsthatareorthodox[11].

TABLE 3.1
SUMMARY OF FUNCTIONSTHAT ARE ORTHODOX.

I Function |
Unate(includesthreshold)

Symmetric

All functionson lessthanfour variables

D. FurtherResults

Definition 3.5 Let & and b be assignmentsf valuesto vari-
ablesX. Function f(X) is positiveiff f(&) > f(b), wheneer
a>b

Theorem3.4 Let f be representedas f(X1,Xz,...
g(h1(X1),h2(X2), ...,hm(Xm)), where h; are orthodox,
o(y1,Y2, ...,¥Ym) is positive,and Xy, X, ... , and Xy, are pair-
wisedisjoint. Then,g(h1(X1), h2(X2), ..., hm(Xm)) is orthodox.
Proof Let P = yi,V¥i,...yi, be a prime implicant of g. Then
thereexist n(hi;)n(hi,)...n(hi,) independenmintermsfor f.
A methodto find suchmintermsis shavn in Example3.5. Let
t be the total numberof suchmintermsfor all the Pls for g.
Notethatthey form anindependensetof mintermsof f. Thus,
anMSOPfor f requiresatleastt Pls.

Ontheotherhand, f canbe representetly the SOPwith t
Pls. Thisis becausesubstitutingMSOPSsfor h; into the MSOP
for g, andthenapplyingthe distributive law producesan SOP
with t productssincet(h;) = n(h;). Thisimpliesthatt(f) =
n(f). 1
Corollary 3.2 Let f be representedas f(X1,Xz,...,Xm) =
g(h1(X1),h2(X2), ..., hm(Xm)), wheee h; are orthodox.g is pos-
itive, and Xy, Xo, ... , and Xy, are pairwisedisjoint. Then,an
MSOPfor f can be obtainedby substitutingthe MSOPsfor
hi (%) into G(y1, Y2, .., Ym), and applyingthedistributive law.

,Xm) =

Example 3.4 Considerthe casewhee g(y1,Y2,¥3) = y1y2 Vv
yays Vysyr. Here, f(X1, Xz, X3) = g(h1(X1), h2(X2), h3(Xs))
containsn(h1)n(hz) + n(h2)n(hs) + n(hs)n(h:1) independent
minterms. Also, it is clear that substitutingMSOPsfor hy,
hy and hz into the MSOP for g(y1,Y2,Yys) and then apply-
ing the distributive law producesan SOPwith t(hs)t(hz) +
T(h2)t(hs) + t(h3)t(h1) products. Note that t(hi) = n(h).
This meansthat the MSOPfor g(h1(X1), h2(X2), h3(X3)) has
t(hy)t(he) + t(hy)t(hs) + Tt(hs)t(hy) products.
(Endof Example)

Example 3.5 Let g(y1,Y2,Y3) = Yay2 V Yay3 V yay1, and let
h1 (X1, X2, X3) = ho(X1, X2, X3) = ha(X1,%2,%3) = h(X1,X%2,X3) =
X1X2 V XoX3 V X3Xq. In this case,1(h) = n(h) = 3. An MIS
for hy(xq,X%2,Xa) IS {X1XoX3,X1XoX3, X1X2X3}. For simplicity,
we denotethis by {011 101,110}. Considerthe function
f(Xg, %2, X3) = g(h1(X1), h2(X2),h3(X3)). Then,a setof in-
dependeninintermsis

111-011-011
111-101-011
111-110-011

011-111-011
101-111-011
110-111-011

011-011-111
101-011-111
110-011-111

111-011-101
111-101-101
111-110-101

011-111-101
101-111-101
110-111-101

011-101-111
101-101-111
110-101-111

111-011-110
111-101-110
111-110-110

011-111-110
101-111-110
110-111-110

011-110-111
101-110-111
110-110-111

Ther are 27 mintermsn theset. Notethatthey are mutually
independentasfollows.

A setof all the primeimplicants(PIs) of the positivefunc-
tion g(y1, Y2, ys) formsan MSOP Notethat theliterals of a PI
of g are uncomplemented\f a variabley; appearsas an un-
complementedteral in a PI, assigna mintermof the MIS of
hi(%). If avariabley; is missingin a Pl, assignany minterm
in thecomplementunctionof h;(X).

First considera PI of g: yoy3. For xq, X2 and x3, we as-
signa minterm111, sincey; is missingin yoys. For X4, Xs
and xg, we assigna minterm0121 or 101 or 110, sincey, ap-
pearsasa positiveliteral in yoys. For X7, Xxg andxg, we assign
a minterm011 or 101 or 110, sinceys appearsas a positive
literal in P. Thus,for a PI yoy3, we have9 different assign-
ments. They are mintermsof f. Also, they are independent
ead other For example,111-011-011and 111-011-101are
independentOn the contrary, supposedhat there is a Pl that
covershothmintermsthenit coversl11-011-**1,whee * de-
notesa don't care, while- is a delimiter Thisimplies111-011-
111is a mintermof f, which contradicts the definitionof f,
sinceg(0,1,0)=0.

Next, considertwo Pls of g: y»y3 andy1y», Also consider
two independensetsof mintermsfor them.Selecbneminterm
fromy,ys and anothermintermfromy,y,. Supposéhat they
are 111-011-011and 011-111-011.We claim that thesetwo
mintermsare mutuallyindependentOn the contrary, suppose



TABLE 3.2
PossIBLE VARIABLESIN A PRODUCT TERM OF THE MAJ FUNCTION.

[ X[ X2[X3| Comment]]
Impossible
Impossible
Impossible

4
4
4

Impossible

v
v
v

L

v
v

Impossible

thatthereis a Pl thatcovershothmintermsthenit covers11-
*11-011. Thisimplies111-111-011is a mintermof f, which
contradictsthe definitionof f, sinceg(0,0,1) = 0.

In this way, we can showthat these27 mintermsare mutu-
ally independent. (Endof Example)

WecanextendTheorenB.4by relaxingtherequirementhat
all subfunctionsnustbe orthodoxin the caseof a specificpos-
itive function,MAJ(y1, Y2, Ys).

Lemma 3.3 Let Hi(X1), H2(X2), and Hz(X3) be the MSOP
of functionshy(X1), h2(X2), and h3(X3), respectivelywhee
X1, X2, and X3 are pairwise disjoint setsof variables. As-
sume at least two are orthodox. Then, an MSOP for
MAJ(hl(Xl), hz(Xz), h3(X3)) is derivedfrom Hl(Xl) H2(X2) \Y
Hl(Xl) H3(X3) Vv H2(X2) H3(X3), using the distribu-
tivelaw. Further T(MAJ(h1(X1), h2(X2), ha(X3))) =T(h1(X1))
T(h2(X2)) + T(he(X1))T(ha(Xs)) + T(h2(X2)) T(h3(X3)).
Proof Table 3.2 shaws the situation with respectto vari-
ables in a prime implicant of M of the MSOP of
MAJ(h1(X1), h2(X2), h3(X3)). Sincethe AND of two func-
tions, at least one of which is orthodox, on disjoint sets
of variablesare orthodox, we can concludethat MSOPsfor
Hl(xl)Hz(Xz), Hl(Xl)H3(X3), and H2(X2)H3(X3) canbe ob-
tainedby thedistributive law. It remaingo shov thatanMSOP
for MAJ(h1(X1), ha(X2), h3(X3)) is derivedasH1 (X1 )Ha(X2) Vv
H1(X1)Hz(X3) V H2(X2)H3(X3). Onthe contrary assumet is
not, andthereis anothedSOR M, thatis anMSOR
Considera primeimplicantin M. A checkin Table3.2in-
dicatesthat at leastone variableexists in M from the group
designatedby the heading.Thefirst row, containingno check,
correspondso a producttermwith no variables.Thus,thisis
an”Impossible” situation,asindicatedby the commentn the
fourth column. The casein which only variablesfrom X3 oc-
cur, the secondrow, is also Impossible. This is so, because,
for this productterm, variablesin X; andX; canbe chosenso
thathi(X;) andhy(X2) are0. Thus,no matterwhat variables
areincludedfrom Xz, the functionis 0 for someassignments
of valuessuchthatthe producttermis 1. It follows thatthe
producttermis not animplicant of the function. Similarly, it
is impossibleto have variablegust from X; andjustfrom X,.
Thelastrow of Table3.2 correspondso a producttermthat
hasatleastonevariablefrom eachsetXs, Xz, andXs. For this
productterm,it mustbethatatleasttwo of thethreefunctions,

h1(X1), h2(X2), andhz(X3) arel; otherwisethefunctionis not
1. Supposehi(X1) andhy(Xz) arel. Then,we caneliminate
variablesrom hz andthefunctionis still 1. It followsthatsuch
variablesare redundantandthe productterm is not a prime
implicant. Thus,this caseis impossible.

Of theremainingfour possibilities,considera termthathas
variablesor their complement$rom X; andXs, andnonefrom
X1. It mustbethatvalueswhich makethe productterm1, also
causehy(X2) and hz(X3) to be 1. On the contrary if either
Ho(X2) or Hz(X3) areO, variablesfrom X; canbe chosenso
thatthefunctionis 0. Thus,thetermis nota productterm. It
followsthataproducttermof thefunctioncontainingvariables
from Xo and X3 only is alsoa productterm of Ha(X2)Hs(X3).
A similar agumentapplieswhenthe productterm hasvari-
ablesonly from X; andX; or from X; andXz. This provesthat
animplicant of the function mustbe animplicant of exactly
one of Hl(Xl) Hz(XZ), Hl(Xl) H3(X3), and H2(X2) H3(X3).
It follows that if the SOP derived from Hi(X1)H2(X2) V
Hl(Xl) H3(X3) V H2(X2) H3(X3) is not an MSOP thenat least
oneof Hl(xl)XZ(Xz), Hl(Xl) H3(X3), ande(Xz) H3(X3) is not
anMSOR a contradiction.t(MAJ(h1(X1), ha(X2), h3(X3))) =
t(ha(Xy))t(ha(X2))  +  T(h(Xa))t(hs(Xs)) + T(h2(X2))
1(h3(X3)) follows directly from this. ]

Note that we don't actually require hy(X1), ha(X), and
hs(X3) to be orthodox. Rather we require only that
the SOPsderived from Hy(X1)H2(X2), Hi(X1)Hz(X3), and
Hz(X2)Hz(X3) beMSOPs.Thus,Lemma3.3appliesto alarger
classof functions.

Definition 3.6 f is apositivecascaddunctionif f canberep-
resentedhs
f(x1, %2, .. . %) =X 01(X%02(. .. (Xn—1On=1%n)) .. ), (2)
whereg; is eitherthe OR (V) or AND (A) function.
We canconclude

Lemma 3.4 TheMSOPof a positivecascaddunctioncanbe
obtainedby recursivesubstitutioninto (2) andthe distributive
law only.

Definition 3.7 Afunctionf (X) is a positivefanout-fr eefunc-
tion iff it canberealizedby a circuit where ead gaterealizes
either AND or OR andwhele ead gateoutputdrivesat most
onegateinput or thecircuit output.

NotethatMAJ(y1, Y2, Y3) is hota positive fanout-fregfunction.

Lemma 3.5 TheMSOPof a positivefanout-fiee functioncan
be obtainedby recursivesubstitutionand the distributive law
only in the expressionfor thefanout-feecircuit.

Definition 3.8 Afunctionf (X) isunateiff it isa constanor is
representableasan SOPin which eat variable appearsonly
complementedr only uncomplemented.

Lemma3.5 canbe extendedto unatefanout-freefunctions.
A unatefunctionis formedfrom apositive functionby comple-
mentingzero,one,or morevariablesand/orthefunctionitself.
For example,xg, X1V X2, X1, andxp V Xz areunatefunctions.
Thelasttwo functionsarepositive. FromLemmaz2 of [2], ary



unatefanout-freecircuit realizesa function that is also real-
ized by a positive fanout-freecircuit with zero,one, or more
variablescomplementedThus,the MSOP of a unatefanout-
freefunction f (X) canbederivedfrom theunderlyingpositive
fanout-freefunction f(X), asspecifiedin Lemma3.5. Thus,
we canstate

Lemma 3.6 TheMSOPof a unatefanout-feefunctioncanbe
obtainedby recursivesubstitutiorandthedistributivelaw only
in the expressionfor the fanout-fiee circuit, whee inverters
canappearonly ontheinput.

Lemma 3.7 Let H1(X1) and Hx(X2) be the MSOPsof non-
constantfunctionshy (X1) and hy(Xz), respectivelywhee X;
andX; aredisjointsetsof variables.Letm(y, X1, Xo) bea MUX
functionsud thatm = hy(X1)yV hz(X2)y. Then,an MSOPfor
h is obtainedby substitutingH1 (X;) into f andHz(X2) into g
andapplyingthe distributive law.

Proof A primeimplicantP of m= hy(X1)yV hx(X2)yisaprime
implicantof hy(X1)y or hz(X2)y andmustcontainthe literal y
ory, respectrely. Remawing the literal y yields a prime im-
plicantP" of hy(X;) or hy(X2). Fromthis, it follows thatthe
MSOPhasat leastt(hy(X1)) + 1(h2(X2)) Pls. 1

IV. TRI-DECOMPOSITION

Definition 4.1 f is a tri-decomposabléf f is representeds
f (X1, X2, X3) = g(h1(X1), h2(X2), h3(X3)). 3)

A naturalextensionto bi-decompositiontri-decomposition
hasspecialmerit becauseertainchoicesfor g occuroftenin
logic designfor example the majority functionandthe multi-
plexer.

Theorem4.1 Let f betri-decompose@s
(X1, X2, X3) = g(h1(X1), h2(X2), h3(X3)).
Leth; andh; (I = 1,2, 3) beorthodox.

(4)

1) If _g(yLY2.¥s) = Yi¥ays V yayays then 1(f) =
T(h1)t(h2)t(h3) + t(hy)t(h2)T(h3). Also, f is orthodox.

2) If g(y1,y2,y3) = yiy2 V yays thent(f) = t(h1)t(ha) +
1(h1)t(hg). Also, f is orthodox.

3) If 9(y1,Y2,¥3) = Vayays V Yiy2ys V yiy2ys then t(f) =
T(hl)'[(hz)'[(h3) + T(hl)'[(hz)'[(h3) + T(hl)'[(hz)'[(h3).
Also, f is orthodox.

4) I g(yi.y2.y3) = Viyays V yays  then 1(f) =
T(h1)t(h2)t(h3) + t(hz)t(h3). Also, f is orthodox.

In all casesMSOPsfor f arederived by substitutingMSOPs
for hj(X) andh;(X) into y; andy; andapplyingthedistributive
law.

Supposehat the given function f hasa tri-decomposition
f(Xl, Xz, Xg) = g(hl(Xl), hz(Xz), h3(X3)), Wherexl Xo and)(g
are mutually disjoint. Also assumethat h;, hz, h3 andtheir
complementsareall orthodox.

In this case,Theorem4.1 shaws thatfor mary functionsg,
anMSOPfor f canbederivedfrom the MSOPsfor g, andhy,
h,, hz andtheir complementsisingthe distributive law only.

Thereare 28 = 256 different functions of threevariables.
Amongthem, 38 functionsaredegeneratethatis, dependon
two or fewer variables.Also 9 arepositive functions,and 64
areunatefanout-freeaswell asunatecascaddunctions. The
numberof three-ariable functionsthat are neither positive,
fanout-free nor P-equvalentto thefunctionsg in Theoreny.1
is only 76. Thus,in mary functions,divide-and-conquepro-
ducesanMSOPR

V. EXPERIMENTAL RESULTS

An experimentwas conductedto determinethe extent to
which divide-and-conqueminimizesfunctionswith an AND
bi-decompositionNamely we have showvn thatit is anattrac-
tive methodwhen at leastone function is orthodox. On the
otherhand,we know thatthe distributive law fails to produce
anMSOPfor specificnon-orthodoXunctions[11]. Theextent
of this failure hasbeenanopenquestionupto this point.

To investigatethis, we formed a set S of 67 randomly
generateds-variable nonorthodoxfunctions. For each, we
found the MSOR usingthe Quine-McCluskg (QM) method.
Then, we produced2278 12-variable functions of the form
f(Xl,Xz) = fl(Xl) fz(Xz), where fl(Xl) and fz(Xz) arecho-
senfrom S. Specifically eachfunction f(Xg, Xp) occursas
oneof the (%) + 67 = 2278waysto chooseanunorderecpair
from S Then,we found the MSOP of eachf Xz, X), using
the QM algorithm and comparedt with the sum-of-products
expressiorobtainedoy applyingthelaw of distributivity to the
productof the MSOPsfor f(X;) and f(Xz). For eachpair,
we computed( f), whichis theabsoluteerrorusingthe divide-
and-conquemethod, i.e., the differencebetweenthe num-
ber of productsin an MSOP andthe SOPderived by divide-
and-conquer For example,a value d( f (Xg, X2)) = 0, means
that the divide-and-conquemethodyields an MSOR while
O( f(X1,X2)) = 1 meanghedivide-and-conquemethodyields
asum-of-productsxpressiorwith onemoreproducttermthan
theMSOPR

Amongthe2278pairsof functions wefoundthat0 < 6 < 4.
The numberof pairswhered =4, 3,2, 1,and0is 2, 9, 198,
1053,and994,respectiely. For 22 of thefunctions,excessive
computationtime neededor the derivation of the MSOP for
thecompositdunction f (X1, Xo) = f1(X1) f (X2) precludedhe
computatiorof d.

Fig. 5.1 shows the valueof 9 for all pairsof functionsin
S The two horizontalaxes eachrepresenindiceson the 67
randomfunctions, while the vertical axis shows the value of
0 whenthe functionindexed by onehorizontalaxisis ANDed
with thefunctionindexedby the otherhorizontalaxis. The di-
agonalextendingfrom (1,1) to (67,67)representsunctionsin
S ANDed with themseles. BecauseAND is commutatve, a
function above this diagonalis identicalto onebelow it, and
theresultingd valuesaresymmetricaboutthis diagonal.Some
valuesof & are missing becauseof prohibitive computation
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Fig. 5.1 Distribution of excesgproducttermsoverMSOPwhen
divide-and-conqueis appliedto non-orthodoXunctions.

time, asmentionedabove.

Theindicesof the functionswere chosenso that functions
thattendedto producesmallerd hada largerindex. With this
choice, it is clearthat there appearto be functionsthat tend
to produced = 0 whencombinedin a bi-decompositiorwith
any otherfunction. This suggestshe existenceof functionsin
additionto orthodoxfunctionsthatyield anMSOPwhencom-
binedin a bi-decompositiorwith ary otherfunction. Within
the 67 randomlychosenfunctions,16 produced = 0 in a bi-
decompositiorwith all 67 functions.

VI. CONCLUDING REMARKS

In this paper we have shovn that divide-and-conqueis a
good heuristic. This follows directly from 6(f) = 0 whenat
mostoneof thetwo functionsis orthodox,andfrom the small
0 whenneitheris orthodox.

Our techniquecan significantly reducethe time neededo
find an MSOR The conceptsdiscussedhave beenusedto
improve MUSASHI logic minimizer [6], which cansuccess-
fully derive exact minimum SOPsfor functions on which
ESPRESSOfails due to memory overflon. For example,
ESPRESSQ1] attemptgo derive the MSOP of f = X3 XoX3 vV
X4X5Xg V - - - V Xg7XogXgg by first finding the complementf f.
It consistsof 33 implicantsandis impossibleto derive; i.e.,
ESPRESSails. Onthe otherhand, MUSASHI just returns
the input SOP as an MSOR It is a sum of disjoint support
functions. So,eachcomponentfunctioncanbe minimizedin-
dependently Also, considerthe function g = (X1 V x2)(Xs V
Xa) (X5 V Xg) - - - (X39 V Xa0). ESPRESSQ@ails sincethe number
of productsis 220 and requirestoo much computationtime,
while MUSASHI generategtis MSOPeasily

Thereis aninterestingopenquestion. Namely whatchar

acterizesthosefunctions for which divide-and-conquesuc-
ceedsin finding the MSOP of functionswith an AND bi-

decomposition.From prior experiments[11], it appearghat
orthodoxfunctionsform a vanishingly small subsetof all n-

variablefunctionsasn — . Thus,if the characteristigs tied

to theorthodoxproperty this suggestshata vanishinglysmall

numberof AND bi-decomposabldéunctions can use divide-

and-conqueto find anMSOR However, from the experiments
presentedhere,divide-and-conquesometimesucceedsvhen
bothfunctionsarenon-orthodox.
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